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Abstract—When applied in a commercial deployment, DHT-
based P2P protocols face a dilemma: although most real-world
participants are so unstable that the maintenance overhead is
prohibitively high, they must be effectively utilized due to the lack
of stable participants. Thus, determining how to leverage unstable
nodes to enhance system scalability and then maximize stability
in high-churn scenarios becomes a substantial problem. This
paper focuses on this topic, and our main findings are two folds:
1) we propose a homogeneous grouping scheme for scalability
enhancement. Besides extending system storage capacity by
admitting all nodes, it clusters homogeneous nodes together,
deploys the inter- and intra-group connections distinctively, and
tunes the number of groups, which aims to facilitate search
efficiency; 2) we further look into how to maximize stability
under this scheme, which is formulated as the problem Maximum
Stability of Grouping. It not only proves to be NP-hard, but
also infeasible; therefore, we propose an approximated grouping
approach and reduce it to an optimization problem that proves to
be feasible. Simulation results exhibit that our grouping strategy
effectively captures the stability-scalability tradeoff. Based on our
proposed measurement metrics, it doubles the storage capacity
of so-called GiantOnly strategy by incurring slightly more churn
and search latency, and is about four times as stable as Chord
with equal capacity and mild improvement in search efficiency.

Index Terms—Peer-to-peer, distributed hash table, stability,
scalability, grouping, homogeneity, high churn, optimization

I. INTRODUCTION

In recent years, peer-to-peer (P2P) systems have been
widely deployed as the base infrastructures of many Internet
applications. Three of their prominent applications include
BitTorrent [1], Skype [2] and eDonkey [3]. To explore Internet
edge resources, peers (clients) contact each other directly,
whereas in conventional networking systems, clients only
communicate with its server. P2P systems are categorized
into three kinds of architecture: centralized, decentralized
and unstructured, and DHT (distributed hash table)-based.
Scalability and efficient search enable DHT-based protocols
to be more applicable for large deployment, thereby attracting
more attention from networking communities. Among them,
Chord [4] is selected as the prototype of our work. In an N -
node network, Chord locates arbitrary data in O(logN) hops.

Previous studies [5]–[7] show that real-world P2P systems
have to involve many unstable participants (e.g., PCs and
PDAs with modems). We call them dwarfs due to their small
session time length (stl). Their participation invariably induces

high churn. To reduce the consequential maintenance cost for
data movement and routing table renewal [8], some DHT-
based deployment schemes (e.g., OpenDHT [9]) only employ
nodes with large stls, e.g., servers or workstations that are
always online (correspondingly, they are called giants). Dwarfs
are not allowed to enter the DHT, but are instead treated as
clients. We coin the term GiantOnly to refer to this strategy.
GiantOnly essentially compromises scalability for stability,
which is reasonable in OpenDHT as OpenDHT is deployed
on Planetlab [10], an open platform with sufficient giants.

Nevertheless, some other large-scale commercial deploy-
ment schemes (e.g., Skype [2], KaZaA [11] and eDonkey [3])
are mainly deployed on Internet edges where dwarfs constitute
the dominant proportion. Should GiantOnly be opted for in
such scenario, it means more service requests are imposed
on fewer service providers, which seriously hinders system
scalability.

The motivation of this paper is based on the observation
that in high-churn DHT deployment, the capability of a single
dwarf is negligible, but due to their overwhelming proportion,
they are still able to make significant contributions with their
combined efforts. More importantly, the exploration of dwarf
capability seems to be the only choice when attempting to offer
scalable services in some high-churn scenarios with few giants.
A sophisticated organization protocol is needed to mitigate the
consequential deterioration in stability.

In summation, the major question becomes: How can we
leverage dwarfs in order to enhance system scalability and
then maximize system stability in high-churn scenarios?

Our primary idea is to admit all nodes and cluster homoge-
neous nodes together (i.e., dwarf with dwarf, giant with giant;
we defer explaining the reason until Section III-A). The inter-
and intra-group connections are deployed distinctively, and the
number of groups is tuned to ease search latency.

We categorize each group into one of two modes - offline
or online - at some slot. Due to the member cooperation in
file storage (addressed in Section III-A at length), a group is
online only if at least one member is active (i.e., in session)
at that time; otherwise it is offline. Correspondingly, a group’s
survival time length during some period is defined as the total
number of slots (within that period) when it is online.

Here we temporarily define a group’s stability as its survival
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time length. Our grouping strategy makes the improvement in
group stability like a zero-sum game. The only way for one
group to become more stable is to grab some members from
other groups, which jeopardizes their stability. Therefore, we
need equalize the stability levels across all groups to maximize
the overall stability from a system perspective. Based on the
definition of group stability, this equalization is achieved by
differentiating each group size.

The example depicted in Table I illustrates this idea. We
determine that by assigning more nodes to a dwarf group
and less to a giant one, the dwarf group can survive for a
time period equal to that of its giant counterpart. Such a
discriminative grouping strategy ought to apply to a more
comprehensive definition of group stability, as well.

To sum up, our contributions are enumerated as follows:
1) We propose a homogeneous grouping scheme to im-

prove scalability. Generally speaking, apart from ad-
mitting all nodes to extend system storage capacity, it
clusters homogeneous nodes together, deploys the inter-
and intra-group connections distinctively, and tunes the
number of groups to alleviate search latency;

2) Under this scheme, we formalize the problem Maximum
Stability of Grouping (MSG) to explore a particular
grouping approach for stability maximization. It is both
NP-hard and infeasible, hence we propose an approx-
imated grouping approach and prove that it can be
reduced to a feasible optimization problem.

A simulation is implemented to compare our Grouping with
GiantOnly and Chord. The results illustrate that Grouping
captures a more reasonable tradeoff between stability and
scalability in high-churn scenarios: based on our measurement
metrics, it gains storage capacity one time more than Gi-
antOnly by mildly jeopardizing stability and search efficiency,
and is around four times as stable as Chord with the same
capacity and even less search latency.

The rest of the paper is organized as follows. After survey-
ing related research in Section II, we introduce in Section III
the homogenous grouping scheme, formulate MSG, prove its
NP-hardness, and elaborate on its infeasibility. We further
give the approximated grouping approach and reduce it into a
feasible optimization problem. The simulation is implemented
and its results are analyzed in Section IV. Section V concludes
the paper and discusses some future work.

II. RELATED WORK

Stability is intensely studied in the research community due
to the inherent high-churn of P2P systems. Previous work is
classified into two categories: 1) choosing appropriate stable
nodes as DHT members, and 2) investigating neighbor failure
detection and recovery mechanisms.

OpenDHT [9] runs a DHT on Planetlab nodes [10]. It offers
services to unstable nodes that play the roles of clients. The
maintenance cost is greatly reduced since Planetlab nodes
are workstations or servers that are always in session, viz.,
far more stable than typical P2P peers. Wang et al. [12]
delve further into this line of study and obtain a threshold

TABLE I
GIANT GROUP VERSUS DWARF GROUP

Time1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Giant group
n1 • • • • • • • •
n2 • • • • • • • • • •

Dwarf group
n3 • • • • •
n4 ↓ •
n5 • • •
n6 ↓ • • •
n7 ↓ ↑ ↓ • •
n8 • • • • ↓ ↑
n9 • • ↑
n10 ↓ • •
n11 • • •
Notice: 1) The black dot for node ni at the j-th slot indicates
that ni is active at that slot, e.g., n6 joins at the 9-th slot and
leaves at the 11-th slot; its stl is 3 slots. 2) The vertical arrows
imply the sequential relay of dwarfs, e.g., at the 5-th slot, n3 is
about to leave, and n5 joins, thus the dwarf group still survives
after the 5-th slot. Owing to such relay, at least one active node
throughout. In accordance with our definition of group stability,
the dwarf group is stable during this period.

to precisely decide how much stability is required for a node
to be accepted by the DHT. Similarly, from a real trace of
PPLive, Wang et al. [13] find out that plenty of stable nodes
exist (but only in a per-snapshot view). They thus strive to
leverage them to serve other unstable nodes specifically from
the aspect of video streaming.

Other work investigates how to properly detect and replace
failed neighbors in order to enhance system stability. Godfrey
et al. [6] focus on the issue of selecting a subset of the
available node set as neighbors to replace failed ones. They
pay particular attention to a range of different node selection
strategies and finally conclude that the simple strategy of
picking a uniform-random replacement performs surprisingly
well. Henceforth, simply adding some randomization is an
easy and effective way to reduce churn. Leonard et al. [14]
model the k-regular graph and examine two metrics - isolation
time and isolation time probability - for models with and
without neighbor recovery, respectively. Similar to [6], a node
is deemed to be isolated whenever all of its neighbors have
failed. On the contrary, we investigate how long a node or
group itself survives to describe system connectivity. Leonard
et al. derive from theoretical analysis that the k-regular graph
exhibits the highest level of fault resilience. Like [6], they
investigate the effect of the neighbor recovery mechanism and
prove that system stability is significantly improved, though
the consequential bandwidth consumption is non-negligible.

When unstable nodes are unavoidably included, data repli-
cation is an alternative way to enhance data availability. Blake
et al. [8] give a comprehensive study on several conflict-
ing system metrics, i.e., stability, scalability, dynamism, and
bandwidth consumption. A simple model is proposed, from
which they draw the conclusion that it is invariable to use a
large amount of cross-system bandwidth for good stability and
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TABLE II
TERMINOLOGY

Notation Definition

Ψ/ψk Ψ is the random variable of group stability, and
ψ1, ψ2, . . . , ψn are its sampling, i.e., ψk is the value
of Gk’s stability.

τk Gk’s survival time length.
σk Gk’s access rate.
BX /Bx BX is the random variable of node capability. Bx

is its sampling, i.e., Bx is the capability value of the
node whose stl equals x.

Ck Gk’s capability.
D(y) CDF of stl (y).
Fk the number of files in Gk .
Gk the k-th group.
m the number of groups.
N estimated network size.
vt(i) PDF of the number of arrivals (i) at the t-th slot.
st a stable slot, viz., the slot when the system size has

been stable.

scalability in highly dynamic systems. Contrariwise, our work
does not intend to consume bandwidth for system stability, but
rather organizes nodes to reduce such costs.

Hierarchical P2P protocols are invariably the focus of
researchers owing to its practicality and feasibility for real
world. Among them, Gnutella 0.6 [15] used to be the most
prevalent one, yet in recent years, it seems to be more attractive
to deploy the top-level overlay in a DHT manner (similar to
the server overlay in OpenDHT [9]). Some analytical models
have been recently derived to shed light on these structures
from various perspectives. For instance, Zoels et al. [16]
strive to minimize the traffic cost for lookup, maintenance
and republish. They compare three hierarchical systems, viz.,
single-connection intra-group structure, fully-meshed intra-
group structure and DHT intra-group structure and reach the
conclusion that the first one is superior to the other two in
the sense of traffic cost. Our work differs from [16] in that
we cluster homogeneous nodes (rather than group giants and
dwarfs together) in an effort to maximize stability.

III. GROUPING STRATEGY

In this section, we first describe the homogeneous grouping
scheme - the general principles to organize nodes in a scalable
way. Furthermore, we analyze how to maximize stability under
this scheme by formulating the problem Maximum Stability
of Grouping. It proves to be NP-hard, and is also infeasible,
thereby we propose an approximated grouping approach by in-
troducing some plausible constraints and realistic assumptions.
This approach is reduced to a feasible optimization problem.
The grouping scheme and approach together compose our
grouping strategy.

Table II is a reference of the terms used in this paper. Each
of them will be exhaustively explained at their first appearance.

A. Homogeneous Grouping Scheme

We design the grouping scheme so as to enhance system
scalability from two orthogonal perspectives, namely, system

storage capacity and search efficiency.
To extend storage capacity, the system admits all nodes

(rather than only giants as in GiantOnly) and assigns them
into different groups. Previous studies (e.g., [5] and [17])
have observed that nodes with long session time are usually
servers or workstations with a dual ISDN or cable, i.e., they
are also giants in other aspects (bandwidth, storage, etc), and
vice versa. It is therefore acceptable to regard a node’s stl
proportional to its general capability in further analysis.

We believe it is invariably impossible for each group to
involve one powerful giant because of its rarity in most high-
churn scenarios. In this sense, the idea that clusters giants
and dwarfs in a mixed way is greatly invalidated. Such idea
will also induce low efficiency when taking the dramatic
asymmetry in node capability into account. For instance, band-
width asymmetry prevents giant bandwidth from being fully-
leveraged when it communicates with dwarfs, and because
of the huge diversity in storage, the departure of a giant
may make it hard for the remaining dwarfs to take over its
many files. Furthermore, the users (nodes) of each ISP usually
exhibit certain homogeneity, so the homogeneous grouping
scheme has the potential to facilitate topology awareness, as
well. In a nutshell, it is both reasonable and efficient, at least
in high-churn scenarios, to group nodes homogeneous in terms
of capability (equivalently, in terms of stl).

To ease search latency, a hierarchical structure is employed
for system connection and routing. Each group corresponds to
one DHT unit (e.g., a virtual Chord node). The establishment
and maintenance of inter-group connections are based on
the DHT, and are implemented as follows: if Ga requires a
DHT-connection to Gb, multiple links from Ga members to
Gb members are established for resilience. In contrast, the
intra-group connections are random. The members of each
group hold the same DHT ID, maintain the same (from the
perspective of the DHT) routing tables, cooperate to store files,
etc. File storage is based on erasure coding [18] such that users
are able to get the complete file from only a fraction of all its
fragments. Two benefits follow: for the graceful departure of a
node, it is unnecessary to transfer all of its fragments to other
active members, which conserves bandwidth. Moreover, the
system becomes more resilient to unexpected node crashes. A
search consists of two successive phases: 1) the DHT-based
route among intermediate groups to arrive at the target DHT
unit (called destination group) where the desired file should
locate, and 2) the unstructured route within that destination
group to integrate enough file fragments. Figure 1 exemplifies
the structure.

Although our target scenarios are highly dynamic, many
previous literatures (such as [5], [17]) have observed that the
number of departures will be roughly offset by those of arrivals
over time, i.e., the network size is eventually stable. For this
reason, the system size is supposed to be estimated from
historical records up to some constant factor and we denote it
as N .

In the case where N is known, it is perceivable that, with a
small number of groups m - which implies big group sizes -
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G42

G1G51

G48

G8

G14

G32

DHT-based inter-group connections

Random intra-group connections

Chord ring

G20

G26

Fig. 1. An example of the hierarchical structure based on Chord. The ID
space is [0, 64). The nodes are supposed to be clustered into nine groups,
and only G8, G14, G32, G42 and G51 are online at that time. The inter-
group connections are based on Chord, e.g., the fingers of G8 ought to point
to G14, G32 and G42 (multiple links for resilience). The fingers of other
groups are omitted for brevity.

the system is unscalable, in that the unstructured route within a
large group is prohibitively time-consuming. On the contrary,
the system ought to be stable as the group with a bigger size
is more likely to survive. It is Gnutella-like for one group to
contain all system nodes. Oppositely, a large m leads to better
scalability but worse stability. It is Chord-like for each group
to be comprised of only one node. In a word, m needs to be
delicately tuned to alleviate search latency. In the following
theorem we will briefly prove that m ∈ Θ(N/ logN) turns
out to be a plausible choice.

Theorem 1. Suppose m ∈ Θ(N/ logN) (that is to say, the
average group size N/m is in Θ(logN)); the number of
search hops is in O(logN) on average.

Proof: The number of search hops is in O(logm) =
O(log(N/ logN)) for the DHT-based route. That number
involved in the unstructured route depends on several factors,
such as 1) the particular topology of its destination group, 2)
the search mechanism deployed, e.g., random walk [19] (from
1-walker to k-walkers) and flooding, and 3) the parameter set-
tings in erasure coding, etc. Nevertheless, it is perceivable that
even in the worst case, viz., 1-walker conducted in any graph
without erasure coding, that number’s expectation should still
be less than the average size of all groups, i.e., in O(logN).
The total number is thus in O(log(N/ logN)) +O(logN) =
O(logN).

Henceforth,m ∈ Θ(N/ logN) renders an acceptable search
latency’s upper bound - logN , though besides the factors
aforementioned, the coefficient still depends on the variance
of group sizes and access rate.

B. Maximum Stability of Grouping (MSG)

The homogeneous grouping scheme merely imposes two
general restrictions (hence called scheme), namely, homogene-
ity and m ∈ Θ(N/ logN), so as to enhance scalability. It is

thus possible to further design a particular approach to group
nodes under this scheme in an effort to maximize stability.
We will formalize this problem as MSG after defining relevant
metrics.

Recall the analogy between the grouping strategy and a
zero-sum game mentioned in Section I. Each group’s stability
ought to be equalized to maximize overall system stability
under the homogeneous grouping scheme. Following this
insight, system stability can be measured by the variance
of group stability (a random variable denoted as Ψ), and
estimated by an unbiased estimator:

V ar(Ψ) =
1

m− 1

m∑
k=1

(ψk − ψ)2, (1)

where ψk is Gk’s stability, ψ = 1
m

m∑
k=1

ψk, and stability

maximization is equivalent to V ar(Ψ) minimization.
It is insufficient to simply define ψk as Gk’s survival

time length (denoted as τk) like in Table I. This is because
groups (nodes) have files with different popularity and are
thus not accessed with identical frequency [20]. Taking this
phenomenon into consideration, we define ψk as τk weighted
by Gk’s access rate σk:

ψk � τk
σk
, (2)

and σk is defined as the popularity summation of all Gk’s
files:

σk � Fk · f(Gk), (3)

where f() is some kind of empirical formula to predict the
average popularity of Gk’s files and Fk is the total number of
Gk’s files.
σk’s definition implies that in a stable system, the more

popular files a group has, the longer it survives. All ratios
between stl and access rate will be about identical in the most
stabilized system where V ar(Ψ) is minimized.

We denote the set of nodes that will join the system during
a significant period by S = {n1, n2, . . . , nL}. Assume each
node ni’s access rate ni.ar, joining time ni.joinT ime and
leaving time ni.leaveT ime are a priori knowledge. Without
the homogeneity restriction taken into account, MSG is for-
malized as follows:

Definition 1 (Maximum Stability of Grouping).
Instance: S = {n1, n2, . . . , nL}.
Solution: A partition of S into m disjoint sets G1, G2, . . . , Gm.

Measure: V ar(Ψ) = 1
m−1

m∑
k=1

(ψk − ψm)2.

C. NP-hardness

Theorem 2. With a non-trivial m ≥ 1, MSG is NP-hard.

Proof: Minimum Sum of Squares (MSS) presented below
has proven to be NP-hard [21]:

Definition 2 (Minimum Sum of Squares).
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Instance: Finite set A, size s(a) ∈ Z+ for each a ∈ A, and
an integer K ≥ 2.
Solution: A partition of A intoK disjoint sets A1, A2, . . . , AK .

Measure:
K∑

i=1

(
∑

a∈Ai

s(a))2.

We complete the proof by reducing MSS to MSG in
polynomial time. Some trivial differences in terminology are
first pointed out: S, m and Gk in MSG corresponds to A,
K and Ai in MSS, respectively. We will reduce MSS to an
auxiliary problem MSG’ being the same to MSG except that

its measure is E(Ψ) = 1
m

m∑
k=1

ψk. Algorithm 1 in the appendix

exhibits how to derive τk from ni ∈ Gk in polynomial
time. Following Equation (3), σk is a simple function of Gk.
Combined with Equation (2), we conclude that the algorithm
to deduce ψk from Gk can be reduced from

∑
a∈Ai

s(a) in

polynomial time by delicately tuning s(.). Up to now it is
possible to reduce MSS to MSG’, thus MSG’ is NP-hard.
Furthermore, V ar(Ψ) = E(Ψ2)−E

2(Ψ) is more complicated
than E(Ψ), it is thereby easy to prove by the reduction to
absurdity that MSG is NP-hard whenever MSG’ is.

Homogeneity restrictions can be further imposed on the
problem, yet this exerts no influence on its NP-hardness.

D. Approximated Grouping Approach

Besides intractability, MSG is also infeasible in that it
entails the prediction of each node’s joining and leaving time,
unpractical in real systems. We thereby look into this issue
from another perspective. Our approach deploys homogeneity
more restrictively so as to reduce MSG into an optimization
problem where only the distribution of stl - D(.), the number
of arrivals - v.(.) and the empirical formula of file popularity
- f(.) need to be known. To this end, the stl axis is divided
into m intervals, i.e., [y0, y1), [y1, y2), . . ., [ym−1, ym), where
y0 = 0 and ym = +∞, and the nodes whose stls are in
the same interval are destined to the same group. This seems
to somehow jeopardize system stability by prohibiting any
overlap of different stl ranges, but this should be insignificant.

Theorems 3 and 4 give the proof that the approach is
actually an optimization problem with only f(.), D(.) and
v.(.) as known conditions.

Theorem 3. σk is the function of yk−1 and yk.

Proof: Equation (3) implies that Fk needs to be calcu-
lated to obtain σk . Numerous literature [22] address the load
balancing problem and have proposed various mechanisms.
This paper focuses only on the high-churn scenarios so it is
simply assumed that files can be assigned to Gk proportional
to its capability Ck with the use of existing load balancing
mechanisms. Without loss of generality, we regard them to be
numerically equal:

Fk = Ck. (4)

As Gk members have different capabilities, we approximate

Ck with their average:

Ck = Ek(BX), (5)

where BX is the random variable of node capability (X is the
random variable of stl), and Ek implies that only Gk’s nodes
are involved in the operation.

Node stl x is assumed to be proportional to its capability
Bx, thereby X and BX can be regarded equal in distribution,
viz., BX ∼ D(X) (D(X) is CDF of X), so

Ek(BX) =
1

D(yk) −D(yk−1)

∫ yk

yk−1

xdD(x). (6)

Equations (3)-(6) complete the proof.

To simplify the analysis, we sample a slot st large enough
such that the system size has been relatively stable (e.g., it
slightly fluctuates around an estimated value) at that time. We
re-define τk as the probability that Gk is online at the st-th
slot:

τk � 1 − P(φk(st)), (7)

where φk(st) denotes the event that Gk is empty at the st-th
slot.

Theorem 4. τk is the function of yk−1 and yk.

Proof: Gk is empty at the st-th slot if and only if, at the
st-th slot, the sessions that started before (called old sessions
or old for brevity) have ended and no new nodes join Gk at
that time:

P(φk(st)) = P(no new at st) · P(old ended before st)

� I(st, k) · II(st, k). (8)

Node arrivals are independent, so

I(st, k) =
+∞∑
i=0

vst(i)
(
1 − (

D(yk) −D(yk−1)
))i

. (9)

The old sessions started at any slot from 0 to st − 1
independently, and end before st is equivalent to the shortness
of their stls, i.e.,

II(st, k) =
st−1∏
x=0

P((old started at x) ∧ (stl < st− x))

�
st−1∏
x=0

III(st, k, x). (10)

The number of arrivals at the st-th slot theoretically range
from 0 to +∞. By the addition principle,

III(st, k, x) =
+∞∑
i=0

P(Jk(i, x) ∧ (Sk(i, st− x)))

=
+∞∑
i=0

P(Jk(i, x)) · P(Sk(i, st− x)), (11)
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where Jk(i, x) is the event that i nodes join Gk at the x-th
slot, and Sk(i, z) is the event that the stls of i nodes in Gk

are all less than z slots.
Following Bernoulli distribution,

P(Jk(i, x)) =
+∞∑
j=i

vx(j)
(
j

i

)
P i(1 − P)j−i, (12)

where P = D(yk) −D(yk−1).
Due to the independence of each stl,

P(Sk(i, st− x)) = (P(Sk(1, st− x)))i, (13)

and as Gk’s stl belongs to [yk−1, yk),

P(Sk(1, z)) =

⎧⎨
⎩

0 z < yk−1
D(z)−D(yk−1)
D(yk)−D(yk−1)

yk−1 ≤ z ≤ yk

1 yk < z

(14)

By Equations (7)-(14), we complete the proof.

Following Equations (1), (2) and the above theorems, it is
easy to obtain Corollary 1:

Corollary 1. Our approximated grouping approach can be
reduced to an optimization problem where y1, y2, . . . , ym−1

needs to be determined to minimize V ar(Ψ) and the known
conditions are f(.), D(.) and v.(.). �

We deem this approximated grouping approach to be fea-
sible in that besides N , f(.), D(.) and v.(.) are admittedly
predictable, as well: it is widely assumed in literature that node
arrival is a memoryless and stochastic process, hence at the
t-th slot, its number conforms to Poisson distribution [23]. Ad-
ditionally, it is confirmed in [12] and [20] that the distribution
of node stl and file popularity are predictable by monitoring
node session history and file retrieval record, respectively.

IV. PERFORMANCE EVALUATION

In this section, we design the simulation with nodes con-
stantly joining and leaving the system. This dynamic process
enables us to investigate the stability and scalability of Group-
ing by contrasting it with Chord and GiantOnly.

A. Simulation Environment Setup

First, file popularity is not considered for the sake of
simplicity, so ψk = τk. Second, two nodes enter the simulation
system per slot on average, and one slot is set as one second.
The number of node arrivals at each second follows the same
Poisson distribution:

vt(i) = e−λ · λ
i

i!
, (15)

where λ = 2. Third, previous literatures [5], [7] observe that
the stl of human-based P2P systems conform to the heavy-
tailed (i.e., Pareto) distribution, yet other systems consisting of
non-human devices (e.g., software agents) exhibit exponential
distribution behaviors. The simulation uses the second one:

D(y) = 1 − e−
1
η y, (16)

where to simulate a high-churn scenario, η = 100. That
implies the expected stl is 100 seconds, and 63.2% of nodes
survive less than 100 seconds. We also discard stls being more
than 1, 000 seconds (1 − e−1000/100 ≈ 0.99995). The system
is simulated to run long enough (10, 000 seconds) to collect
sufficient data.

B. Measurement Metrics

Churn rate is defined to measure stability. It is the number
of dynamic peers per churn unit (set as 100 seconds). A peer
represents a group in Grouping and a node otherwise, and it
is dynamic if it changes its status (i.e., from online to offline
or vice versa) within that unit. We say strategy A is x times
as stable as strategy B when B’s churn rate is on average x
times as much as A.

We evaluate scalability from two orthogonal perspectives
- system storage capacity and search efficiency. Recall the
assumption that BX and X are equal in distribution, a node’s
capacity can be numerically represented by its stl without
loss of generality. To measure search efficiency, particular
attention is paid to the number of hops involved in Grouping’s
unstructured search. Notice that such number is definitely
trivial for those small-sized groups (those containing less than
10 nodes in our simulation), thereby it is merely necessary
to look into the cases that the eight biggest groups (viz.,
G1, G2, . . . , G8) act as destination groups.

C. Implementation, Results, and Analysis

We simulate GiantOnly as follows: at the st-th slot when
system size is pretty stable, the top m active nodes in terms
of predicted remaining stl are deemed as giants and thus serve
as the DHT peers. From that moment to the end, whenever a
DHT peer ends its session, the node outside the DHT with the
largest remaining stl is selected into the DHT, which maintains
the DHT size constant (m). Grouping, Chord and GiantOnly
are compared from the st-th slot to the end.

For implementing Grouping, it is required to determine the
value of st and m. To this end, we plot the evolution of
system size - N(t) over time t. Figure 2 is the result after
ten iterations. We observe that N(t) is approximately 200
over significant periods of time after the 400-th second. This
is consistent with Little’s law [24], which states that N(t)
converges to the product of the expectations of vt(.) and
D(.), i.e., λ · η = 200. Therefore, st = 500, N = 200,
m = 200/ log2 200 ≈ 26, and for comparison purpose, the
size of Chord is also set to 200.

The approximated grouping approach is run in Matlab 7.5.0
as an optimization problem which determines y1, y2, . . . , y25
to minimize V ar(Ψ), and nodes will be clustered according
to the resultant grouping. We set the optimization error as
10−8 and display the output in Figure 3 and Figure 4. In
accordance with their stl intervals, all groups are sorted in
ascending order and indexed accordingly. Just as predicted,
the curve of the number of nodes in each group is skewed,
which means that a dwarf group has to involve more nodes
than its giant counterpart to maintain a comparable stability.
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Fig. 2. The evolution of network size over time.
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5 10 15 20 25

*44

*46

*48

*50

*52

*54

Group ID

ψ 
(*

=0
.9

99
61

58
)

 

 average ψ
ψ

k

Fig. 3. Each group’s stability ψk and their mean.
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spectively.

By consulting the output, each newly-joining node is destined
to enter a certain group based on its stl.

We contrast Grouping with the other two strategies in
terms of the three metrics. Figure 5 demonstrates that, as
we expected, Chord is far more dynamic than Grouping. In
most churn units, there exist more than 160 dynamic nodes.
On the contrary, GiantOnly’s churn rate is low: the number
of dynamic nodes are mostly less than 20 per churn unit.
In grouping, a group is not likely to be empty owing to its
multiple members, thus its churn rate resides between Chord
and GiantOnly. On average, Chord’s churn rate is 3.1 times
more so than that of Grouping. That is to say, Grouping is 4.1
times as stable as Chord. On the other hand, Grouping’s churn
rate is less than twice as much as that of GiantOnly, which
seems pretty stable.

Since all nodes are involved in Chord and Grouping, their
storage capacities are approximately equal. Henceforth, we
only contrast Grouping with GiantOnly on this metric. Fig-
ure 6 explicates that Grouping’s capacity is perceivably greater
than that of GiantOnly by nearly two times. Nevertheless, as
node capability conforms to exponential distribution (like stl),
though GiantOnly only includes 26 (out of 200 nodes) giants
in the DHT, the capacity ratio of GiantOnly to Grouping - 1/2
on average - is far bigger than the ratio of the number of peers
- 26/200.

To contrast Grouping with Chord and GiantOnly in search
efficiency, we assume the target file locates on each group
member equally likely. It easily proves that the expected
number of search hops in Chord and GiantOnly is log2N − 1
and log2m − 1, respectively. We simplify related settings in
Grouping as follows:

1) each group is a k-regular graph (k = 4);
2) erasure coding is not implemented;
3) flooding search is performed for the target.

Based on the above settings, Grouping’s unstructured search
is simulated as below: 100 sample graphs are randomly gen-
erated for each group, and 100 random flooding is performed
on each sample. Figure 7 plots the cases that the eight
biggest groups are the destination groups, and for the sake
of comparison, log2N−1 and log2m−1 are plotted, as well.
It can be figured out that even in these large-size groups, the
unstructured search only incurs slightly more hops, e.g., 2.77
in G1, 0.99 in G2, and much less in other groups. Henceforth,
the overall search hops in Grouping is still less than that of
Chord. Needless to say, this enhancement is closely related
to our specific settings, and bandwidth might somehow suffer
as a result of hop decrease. Nevertheless, taking into account
that most groups are relatively small-size, the tradeoff between
search latency and bandwidth consumption from a system
perspective seems resolvable by delicately tuning relevant
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parameters on demand.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we employ the grouping strategy for the
utilization of unstable nodes in high-churn DHT deployment.
A homogeneous grouping scheme is proposed to enhance
scalability. Not only are all nodes admitted to extend system
storage capacity, but it also clusters homogeneous nodes
together, deploys the inter- and intra-group connections dis-
tinctively, and tunes the number of groups, in an effort to
ease search latency. How to maximize stability under this
scheme is explored by formulating the problem Maximum
Stability of Grouping. We prove it to be NP-hard, and elaborate
on its infeasibility. Therefore, we propose an approximated
grouping approach and reduce it to a feasible optimization
problem. Simulation results reveal that Grouping derives a
better stability-scalability tradeoff. Based on our measurement
metrics, it is 4.1 times as stable as Chord with similar capacity
and mild alleviation in search latency. Contrast to GiantOnly,
it enjoys double capacity by slightly compromising stability
and search efficiency.

Notice that the difference between N and N(t) influences
the tradeoff effect - thus, if N(t) will greatly change (e.g.,
expansion) for a long period, the original grouping ought to
change, as well. A natural solution is to re-estimate N(t)
and then re-group, which, however, involves considerable file
movement. We propose a light-weight mechanism: each group
Gk splits into two subgroups uniformly, i.e., both of their stls
range from yk−1 to yk. One of them is assigned a new ID and
is treated as a new group. Such an adjustment leads the stl
ranges to overlap each other, yet subgroups have performances
similar to the original one. More work is needed to evaluate
its performance.
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APPENDIX

Algorithm 1: Get τk from Gk

Data: Gk = {n1, n2, . . . , n|Gk|}
Result: τk
begin1

Put Gk into array a[2|Gk|] in ascendant order;2

Suppose a[0] is nt.joinT ime;3

s⇐ 0;4

pivot⇐ 0;5

Push a[0] into a stack;6

while pivot < 2|Gk| − 1 do7

for i = 1 to 2|Gk| − 1 do8

if a[i] is nt.leaveT ime then9

s⇐ s+ (nt.leaveT ime− nt.joinT ime);10

pivot⇐ i+ 1;11

break;12

if a[i] is a joining time then13

Push;14

else15

Pop;16

τk ⇐ s;17

end18
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